Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.

Identifieur interne : 000535 ( Main/Exploration ); précédent : 000534; suivant : 000536

CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.

Auteurs : Anne Bünder [Suède] ; Ola Sundman [Suède] ; Amir Mahboubi [Suède] ; Staffan Persson [Australie] ; Shawn D. Mansfield [Canada] ; Markus Rüggeberg [Suisse] ; Totte Niittyl [Suède]

Source :

RBID : pubmed:32526794

Abstract

Cellulose microfibrils synthesized by CELLULOSE SYNTHASE COMPLEXES (CSCs) are the main load-bearing polymers in wood. CELLULOSE SYNTHASE INTERACTING1 (CSI1) connects CSCs with cortical microtubules, which align with cellulose microfibrils. Mechanical properties of wood are dependent on cellulose microfibril alignment and structure in the cell walls, but the molecular mechanism(s) defining these features is unknown. Herein, we investigated the role of CSI1 in hybrid aspen (Populus tremula × Populus tremuloides) by characterizing transgenic lines with significantly reduced CSI1 transcript abundance. Reduction in leaves (50-80%) caused leaf twisting and misshaped pavement cells, while reduction (70-90%) in developing xylem led to impaired mechanical wood properties evident as a decrease in the elastic modulus and rupture. X-ray diffraction measurements indicate that microfibril angle was not impacted by the altered CSI1 abundance in developing wood fibres. Instead, the augmented wood phenotype of the transgenic trees was associated with a reduced cellulose degree of polymerization. These findings establish a function for CSI1 in wood mechanics and in defining leaf cell shape. Furthermore, the results imply that the microfibril angle in wood is defined by CSI1 independent mechanism(s).

DOI: 10.1111/tpj.14873
PubMed: 32526794


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.</title>
<author>
<name sortKey="Bunder, Anne" sort="Bunder, Anne" uniqKey="Bunder A" first="Anne" last="Bünder">Anne Bünder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83</wicri:regionArea>
<wicri:noRegion>SE 901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sundman, Ola" sort="Sundman, Ola" uniqKey="Sundman O" first="Ola" last="Sundman">Ola Sundman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, Umeå, SE 901 87, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, Umeå, SE 901 87</wicri:regionArea>
<wicri:noRegion>SE 901 87</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE 901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE 901 83</wicri:regionArea>
<wicri:noRegion>SE 901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Persson, Staffan" sort="Persson, Staffan" uniqKey="Persson S" first="Staffan" last="Persson">Staffan Persson</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biosciences, University of Melbourne, Parkville, VIC, 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruggeberg, Markus" sort="Ruggeberg, Markus" uniqKey="Ruggeberg M" first="Markus" last="Rüggeberg">Markus Rüggeberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Building Materials, Zurich, 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Building Materials, Zurich, 8093</wicri:regionArea>
<wicri:noRegion>8093</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Cellulose and Wood Materials, Swiss Federal Laboratories for Material Science and Technology (Empa), Dubendorf, 8600, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Cellulose and Wood Materials, Swiss Federal Laboratories for Material Science and Technology (Empa), Dubendorf, 8600</wicri:regionArea>
<wicri:noRegion>8600</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83</wicri:regionArea>
<wicri:noRegion>SE 901 83</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32526794</idno>
<idno type="pmid">32526794</idno>
<idno type="doi">10.1111/tpj.14873</idno>
<idno type="wicri:Area/Main/Corpus">000258</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000258</idno>
<idno type="wicri:Area/Main/Curation">000258</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000258</idno>
<idno type="wicri:Area/Main/Exploration">000258</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.</title>
<author>
<name sortKey="Bunder, Anne" sort="Bunder, Anne" uniqKey="Bunder A" first="Anne" last="Bünder">Anne Bünder</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83</wicri:regionArea>
<wicri:noRegion>SE 901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sundman, Ola" sort="Sundman, Ola" uniqKey="Sundman O" first="Ola" last="Sundman">Ola Sundman</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Chemistry, Umeå University, Umeå, SE 901 87, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Chemistry, Umeå University, Umeå, SE 901 87</wicri:regionArea>
<wicri:noRegion>SE 901 87</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE 901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE 901 83</wicri:regionArea>
<wicri:noRegion>SE 901 83</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Persson, Staffan" sort="Persson, Staffan" uniqKey="Persson S" first="Staffan" last="Persson">Staffan Persson</name>
<affiliation wicri:level="4">
<nlm:affiliation>School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.</nlm:affiliation>
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Biosciences, University of Melbourne, Parkville, VIC, 3010</wicri:regionArea>
<orgName type="university">Université de Melbourne</orgName>
<placeName>
<settlement type="city">Melbourne</settlement>
<region type="état">Victoria (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.</nlm:affiliation>
<country xml:lang="fr">Canada</country>
<wicri:regionArea>Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4</wicri:regionArea>
<orgName type="university">Université de la Colombie-Britannique</orgName>
<placeName>
<settlement type="city">Vancouver</settlement>
<region type="state">Colombie-Britannique </region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ruggeberg, Markus" sort="Ruggeberg, Markus" uniqKey="Ruggeberg M" first="Markus" last="Rüggeberg">Markus Rüggeberg</name>
<affiliation wicri:level="1">
<nlm:affiliation>Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Building Materials, Zurich, 8093, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Building Materials, Zurich, 8093</wicri:regionArea>
<wicri:noRegion>8093</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Cellulose and Wood Materials, Swiss Federal Laboratories for Material Science and Technology (Empa), Dubendorf, 8600, Switzerland.</nlm:affiliation>
<country xml:lang="fr">Suisse</country>
<wicri:regionArea>Cellulose and Wood Materials, Swiss Federal Laboratories for Material Science and Technology (Empa), Dubendorf, 8600</wicri:regionArea>
<wicri:noRegion>8600</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden.</nlm:affiliation>
<country xml:lang="fr">Suède</country>
<wicri:regionArea>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83</wicri:regionArea>
<wicri:noRegion>SE 901 83</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Plant journal : for cell and molecular biology</title>
<idno type="eISSN">1365-313X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cellulose microfibrils synthesized by CELLULOSE SYNTHASE COMPLEXES (CSCs) are the main load-bearing polymers in wood. CELLULOSE SYNTHASE INTERACTING1 (CSI1) connects CSCs with cortical microtubules, which align with cellulose microfibrils. Mechanical properties of wood are dependent on cellulose microfibril alignment and structure in the cell walls, but the molecular mechanism(s) defining these features is unknown. Herein, we investigated the role of CSI1 in hybrid aspen (Populus tremula × Populus tremuloides) by characterizing transgenic lines with significantly reduced CSI1 transcript abundance. Reduction in leaves (50-80%) caused leaf twisting and misshaped pavement cells, while reduction (70-90%) in developing xylem led to impaired mechanical wood properties evident as a decrease in the elastic modulus and rupture. X-ray diffraction measurements indicate that microfibril angle was not impacted by the altered CSI1 abundance in developing wood fibres. Instead, the augmented wood phenotype of the transgenic trees was associated with a reduced cellulose degree of polymerization. These findings establish a function for CSI1 in wood mechanics and in defining leaf cell shape. Furthermore, the results imply that the microfibril angle in wood is defined by CSI1 independent mechanism(s).</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32526794</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1365-313X</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>Jun</Month>
<Day>11</Day>
</PubDate>
</JournalIssue>
<Title>The Plant journal : for cell and molecular biology</Title>
<ISOAbbreviation>Plant J</ISOAbbreviation>
</Journal>
<ArticleTitle>CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/tpj.14873</ELocationID>
<Abstract>
<AbstractText>Cellulose microfibrils synthesized by CELLULOSE SYNTHASE COMPLEXES (CSCs) are the main load-bearing polymers in wood. CELLULOSE SYNTHASE INTERACTING1 (CSI1) connects CSCs with cortical microtubules, which align with cellulose microfibrils. Mechanical properties of wood are dependent on cellulose microfibril alignment and structure in the cell walls, but the molecular mechanism(s) defining these features is unknown. Herein, we investigated the role of CSI1 in hybrid aspen (Populus tremula × Populus tremuloides) by characterizing transgenic lines with significantly reduced CSI1 transcript abundance. Reduction in leaves (50-80%) caused leaf twisting and misshaped pavement cells, while reduction (70-90%) in developing xylem led to impaired mechanical wood properties evident as a decrease in the elastic modulus and rupture. X-ray diffraction measurements indicate that microfibril angle was not impacted by the altered CSI1 abundance in developing wood fibres. Instead, the augmented wood phenotype of the transgenic trees was associated with a reduced cellulose degree of polymerization. These findings establish a function for CSI1 in wood mechanics and in defining leaf cell shape. Furthermore, the results imply that the microfibril angle in wood is defined by CSI1 independent mechanism(s).</AbstractText>
<CopyrightInformation>© 2020 The Authors. The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bünder</LastName>
<ForeName>Anne</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sundman</LastName>
<ForeName>Ola</ForeName>
<Initials>O</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry, Umeå University, Umeå, SE 901 87, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mahboubi</LastName>
<ForeName>Amir</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, SE 901 83, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Persson</LastName>
<ForeName>Staffan</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mansfield</LastName>
<ForeName>Shawn D</ForeName>
<Initials>SD</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-0175-554X</Identifier>
<AffiliationInfo>
<Affiliation>Department of Wood Science, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rüggeberg</LastName>
<ForeName>Markus</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Swiss Federal Institute of Technology Zurich (ETH Zurich), Institute for Building Materials, Zurich, 8093, Switzerland.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Cellulose and Wood Materials, Swiss Federal Laboratories for Material Science and Technology (Empa), Dubendorf, 8600, Switzerland.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Niittylä</LastName>
<ForeName>Totte</ForeName>
<Initials>T</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-8029-1503</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, SE 901 83, Sweden.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<Agency>Bio4Energy</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>VINNOVA</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>the Swedish Research Council for Sustainable Development</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>University of Melbourne</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>DP190101941</GrantID>
<Agency>ARC DP</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>FT160100218</GrantID>
<Agency>FT</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>06</Month>
<Day>11</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>Plant J</MedlineTA>
<NlmUniqueID>9207397</NlmUniqueID>
<ISSNLinking>0960-7412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Populus </Keyword>
<Keyword MajorTopicYN="N">CSI1</Keyword>
<Keyword MajorTopicYN="N">aspen</Keyword>
<Keyword MajorTopicYN="N">cell wall</Keyword>
<Keyword MajorTopicYN="N">cellulose</Keyword>
<Keyword MajorTopicYN="N">cellulose interacting 1</Keyword>
<Keyword MajorTopicYN="N">pavement cell</Keyword>
<Keyword MajorTopicYN="N">transgenic trees</Keyword>
<Keyword MajorTopicYN="N">wood mechanics</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>02</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>06</Month>
<Day>01</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>6</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32526794</ArticleId>
<ArticleId IdType="doi">10.1111/tpj.14873</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Bailey, I.W. and Vestal, M.R. (1937) The orientation of cellulose in the secondary wall of tracheary cells. J. Arnold. Arbor. 18, 185-195.</Citation>
</Reference>
<Reference>
<Citation>Barnett, J.R. and Bonham, V.A. (2004) Cellulose microfibril angle in the cell wall of wood fibres. Biol. Rev. 79, 461-472.</Citation>
</Reference>
<Reference>
<Citation>Beery, W., Ifju, G. and McLain, T. (1983) Quantitative wood anatomy-relating anatomy to transverse tensile strength. Wood Fiber Sci. 15, 395-407.</Citation>
</Reference>
<Reference>
<Citation>Bringmann, M., Landrein, B., Schudoma, C., Hamant, O., Hauser, M.-T. and Persson, S. (2012a) Cracking the elusive alignment hypothesis: the microtubule-cellulose synthase nexus unraveled. Trends Plant Sci. 17, 666-674.</Citation>
</Reference>
<Reference>
<Citation>Bringmann, M., Li, E., Sampathkumar, A., Kocabek, T., Hauser, M.T. and Persson, S. (2012b) POM-POM2/cellulose synthase interacting1 is essential for the functional association of cellulose synthase and microtubules in Arabidopsis. Plant Cell, 24, 163-177.</Citation>
</Reference>
<Reference>
<Citation>Burgert, I., Frühmann, K., Keckes, J., Fratzl, P. and Stanzl-Tschegg, S.E. (2003) Microtensile testing of wood fibers combined with video extensometry for efficient strain detection. Holzforschung, 57, 661-664.</Citation>
</Reference>
<Reference>
<Citation>Bylesjo, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E. and Trygg, J. (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J. Chemometr. 20, 341-351.</Citation>
</Reference>
<Reference>
<Citation>Bylesjö, M., Rantalainen, M., Cloarec, O., Nicholson, J.K., Holmes, E. and Trygg, J. (2006) OPLS discriminant analysis: combining the strengths of PLS-DA and SIMCA classification. J Chemom. 20, 341-351.</Citation>
</Reference>
<Reference>
<Citation>Chaffey, N., Barlow, P. and Barnett, J. (2000) A cytoskeletal basis for wood formation in angiosperm trees: the involvement of microfilaments. Planta, 210, 890-896.</Citation>
</Reference>
<Reference>
<Citation>Chaffey, N., Barlow, P. and Sundberg, B. (2002) Understanding the role of the cytoskeleton in wood formation in angiosperm trees: hybrid aspen (Populus tremula × P. tremuloides) as the model species. Tree Physiol. 22, 239-249.</Citation>
</Reference>
<Reference>
<Citation>Clair, B., Alméras, T., Pilate, G., Jullien, D., Sugiyama, J. and Riekel, C. (2010) Maturation stress generation in poplar tension wood studied by synchrotron radiation microdiffraction. Plant Physiol. 152, 1650-1658.</Citation>
</Reference>
<Reference>
<Citation>Clough, S.J. and Bent, A.F. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.</Citation>
</Reference>
<Reference>
<Citation>Cosgrove, D.J. (2005) Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6, 850.</Citation>
</Reference>
<Reference>
<Citation>Einstein, A. (1910) Theorie der Opaleszenz von homogenen Flüssigkeiten und Flüssigkeitsgemischen in der Nähe des kritischen Zustandes. Ann. Phys. 338, 1275-1298.</Citation>
</Reference>
<Reference>
<Citation>Evans, R. and Elic, J. (2001) Rapid prediction of wood stiffness from microfibril angle and density. Forest. Prod. J. 51(3), 53.</Citation>
</Reference>
<Reference>
<Citation>Fengel, D. and Stoll, M. (1973) Über die Veränderungen des Zellquerschnitts, der Dicke der Zellwand und der Wandschichten von Fichtenholz-Tracheiden innerhalb eines Jahrringes. Holzforschung, 27, 1-7.</Citation>
</Reference>
<Reference>
<Citation>Fengel, D., Wegener, G. and Greune, A. (1989) Studies on the delignification of spruce wood by organosolv pulping using SEM-EDXA and TEM. Wood Sci. Technol. 23, 123-130.</Citation>
</Reference>
<Reference>
<Citation>Fu, Y., Gu, Y., Zheng, Z., Wasteneys, G. and Yang, Z. (2005) Arabidopsis interdigitating cell growth requires two antagonistic pathways with opposing action on cell morphogenesis. Cell, 120, 687-700.</Citation>
</Reference>
<Reference>
<Citation>Fukuda, H. (1996) Xylogenesis: initiation, progression, and cell death. Annu. Rev. Plant Biol. 47, 299-325.</Citation>
</Reference>
<Reference>
<Citation>Funada, R., Abe, H., Furusawa, O., Imaizumi, H., Fukazawa, K. and Ohtani, J. (1997) The orientation and localization of cortical microtubules in differentiating conifer tracheids during cell expansion. Plant Cell Physiol. 38, 210-212.</Citation>
</Reference>
<Reference>
<Citation>Gibson, E. (1992) Wood: a natural fibre reinforced composite. Met. Mater. 8, 333-336.</Citation>
</Reference>
<Reference>
<Citation>Gorshkova, T., Brutch, N., Chabbert, B., Deyholos, M., Hayashi, T., Lev-Yadun, S., Mellerowicz, E.J., Morvan, C., Neutelings, G. and Pilate, G. (2012) Plant fiber formation: state of the art, recent and expected progress, and open questions. Crit. Rev. Plant Sci. 31, 201-228.</Citation>
</Reference>
<Reference>
<Citation>Groover, A.T., Nieminen, K., Helariutta, Y. and Mansfield, S.D. (2010) Wood formation in Populus. In Genetics and genomics of Populus. New York, NY: Springer. pp. 201-224.</Citation>
</Reference>
<Reference>
<Citation>Gu, Y., Kaplinsky, N., Bringmann, M., Cobb, A., Carroll, A., Sampathkumar, A., Baskin, T.I., Persson, S. and Somerville, C.R. (2010) Identification of a cellulose synthase-associated protein required for cellulose biosynthesis. Proc. Natl. Acad. Sci. USA, 107, 12866-12871.</Citation>
</Reference>
<Reference>
<Citation>Gu, Y. and Somerville, C. (2010) Cellulose synthase interacting protein: a new factor in cellulose synthesis. Plant Signal Behav. 5, 1571-1574.</Citation>
</Reference>
<Reference>
<Citation>Harada, H. (1962) Electron microscopy of ultrathin sections of beech wood (Fagus crenata Blume). J. Japan Wood Res. Soc. 8, 252-258.</Citation>
</Reference>
<Reference>
<Citation>Huntley, S.K., Ellis, D., Gilbert, M., Chapple, C. and Mansfield, S.D. (2003) Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem. 51, 6178-6183.</Citation>
</Reference>
<Reference>
<Citation>Kerr, T. and Bailey, I.W. (1934) The cambium and its derivative tissues: No. X. Structure, optical properties and chemical composition of the so-called middle lamella. J. Arnold. Arbor. 15, 327-349.</Citation>
</Reference>
<Reference>
<Citation>Kumar, R., Hu, F., Hubbell, C.A., Ragauskas, A.J. and Wyman, C.E. (2013) Comparison of laboratory delignification methods, their selectivity, and impacts on physiochemical characteristics of cellulosic biomass. Biores. Technol. 130, 372-381.</Citation>
</Reference>
<Reference>
<Citation>Landrein, B., Lathe, R., Bringmann, M., Vouillot, C., Ivakov, A., Boudaoud, A., Persson, S. and Hamant, O. (2013) Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis. Curr. Biol. 23, 895-900.</Citation>
</Reference>
<Reference>
<Citation>Lei, L., Li, S., Du, J., Bashline, L. and Gu, Y. (2013) Cellulose synthase INTERACTIVE3 regulates cellulose biosynthesis in both a microtubule-dependent and microtubule-independent manner in Arabidopsis. Plant Cell, 25, 4912-4923.</Citation>
</Reference>
<Reference>
<Citation>Lei, L., Singh, A., Bashline, L., Li, S., Yingling, Y.G. and Gu, Y. (2015) CELLULOSE SYNTHASE INTERACTIVE1 is required for fast recycling of cellulose synthase complexes to the plasma membrane in Arabidopsis. Plant Cell, 27(10), 2926-2940. https://doi.org/10.1105/tpc.15.00442</Citation>
</Reference>
<Reference>
<Citation>Li, S., Bashline, L., Zheng, Y., Xin, X., Huang, S., Kong, Z., Kim, S.H., Cosgrove, D.J. and Gu, Y. (2016) Cellulose synthase complexes act in a concerted fashion to synthesize highly aggregated cellulose in secondary cell walls of plants. Proc. Natl Acad. Sci. USA, 113, 11348-11353.</Citation>
</Reference>
<Reference>
<Citation>Li, S., Lei, L., Somerville, C.R. and Gu, Y. (2012) Cellulose synthase interactive protein 1 (CSI1) links microtubules and cellulose synthase complexes. Proc. Natl Acad. Sci. USA, 109, 185-190.</Citation>
</Reference>
<Reference>
<Citation>Müller, M., Burghammer, M. and Sugiyama, J. (2006) Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction. Holzforschung, 60(5), 474-479.</Citation>
</Reference>
<Reference>
<Citation>Nilsson, O., Alden, T., Sitbon, F., Anthony Little, C.H., Chalupa, V., Sandberg, G. and Olsson, O. (1992) Spatial pattern of cauliflower mosaic virus 35S promoter-luciferase expression in transgenic hybrid aspen trees monitored by enzymatic assay and non-destructive imaging. Transgenic Res. 1, 209-220.</Citation>
</Reference>
<Reference>
<Citation>Oda, Y., Mimura, T. and Hasezawa, S. (2005) Regulation of secondary cell wall development by cortical microtubules during tracheary element differentiation in Arabidopsis cell suspensions. Plant Physiol. 137, 1027-1036.</Citation>
</Reference>
<Reference>
<Citation>Paredez, A.R., Somerville, C.R. and Ehrhardt, D.W. (2006) Visualization of cellulose synthase demonstrates functional association with microtubules. Science, 312, 1491-1495.</Citation>
</Reference>
<Reference>
<Citation>Podzimek, S. (1994) The use of GPC coupled with a multiangle laser light scattering photometer for the characterization of polymers. On the determination of molecular weight, size and branching. J. Appl. Polym. Sci. 54, 91-103.</Citation>
</Reference>
<Reference>
<Citation>Poljak, A. (1948) Holzaufschluss mit Peressigsäure. Angew. Chem. 60, 45-46.</Citation>
</Reference>
<Reference>
<Citation>Potthast, A., Radosta, S., Saake, B., Lebioda, S., Heinze, T., Henniges, U., Isogai, A., Koschella, A., Kosma, P. and Rosenau, T. (2015) Comparison testing of methods for gel permeation chromatography of cellulose: coming closer to a standard protocol. Cellulose, 22, 1591-1613.</Citation>
</Reference>
<Reference>
<Citation>Preston, R.D. (1974) The Physical Biology of Plant Cell Walls. London: Chapman & Hall.</Citation>
</Reference>
<Reference>
<Citation>Reiterer, A., Lichtenegger, H., Fratzl, P. and Stanzl-Tschegg, S. (2001) Deformation and energy absorption of wood cell walls with different nanostructure under tensile loading. J. Mater. Sci. 36, 4681-4686.</Citation>
</Reference>
<Reference>
<Citation>Reynolds, E.S. (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell. Biol. 17, 208.</Citation>
</Reference>
<Reference>
<Citation>Roberts, A., Frost, A., Roberts, E. and Haigler, C. (2004) Roles of microtubules and cellulose microfibril assembly in the localization of secondary-cell-wall deposition in developing tracheary elements. Protoplasma, 224, 217-229.</Citation>
</Reference>
<Reference>
<Citation>Rüggeberg, M., Saxe, F., Metzger, T.H., Sundberg, B., Fratzl, P. and Burgert, I. (2013) Enhanced cellulose orientation analysis in complex model plant tissues. J. Struct. Biol. 183, 419-428.</Citation>
</Reference>
<Reference>
<Citation>Sampathkumar, A., Krupinski, P., Wightman, R., Milani, P., Berquand, A., Boudaoud, A., Hamant, O., Jönsson, H. and Meyerowitz, E.M. (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. Elife, 3, e01967.</Citation>
</Reference>
<Reference>
<Citation>Schneider, R., Tang, L., Lampugnani, E.R., Barkwill, S., Lathe, R., Zhang, Y., McFarlane, H.E., Pesquet, E., Niittyla, T. and Mansfield, S.D. (2017) Two complementary mechanisms underpin cell wall patterning during xylem vessel development. Plant Cell, 29, 2433-2449.</Citation>
</Reference>
<Reference>
<Citation>Watanabe, Y., Meents, M., McDonnell, L., Barkwill, S., Sampathkumar, A., Cartwright, H., Demura, T., Ehrhardt, D., Samuels, A. and Mansfield, S. (2015) Visualization of cellulose synthases in Arabidopsis secondary cell walls. Science, 350, 198-203.</Citation>
</Reference>
<Reference>
<Citation>Watanabe, Y., Schneider, R., Barkwill, S., Gonzales-Vigil, E., Hill, J.L., Samuels, A.L., Persson, S. and Mansfield, S.D. (2018) Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proc. Natl. Acad. Sci. USA, 115, E6366-E6374.</Citation>
</Reference>
<Reference>
<Citation>Wightman, R. and Turner, S.R. (2008) A novel mechanism important for the alignment of microtubules. Plant Signal. Behav. 3, 238-239.</Citation>
</Reference>
<Reference>
<Citation>Wyatt, P.J. (1993) Light scattering and the absolute characterization of macromolecules. Anal. Chim. Acta, 272, 1-40.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>Canada</li>
<li>Suisse</li>
<li>Suède</li>
</country>
<region>
<li>Colombie-Britannique </li>
<li>Victoria (État)</li>
</region>
<settlement>
<li>Melbourne</li>
<li>Vancouver</li>
</settlement>
<orgName>
<li>Université de Melbourne</li>
<li>Université de la Colombie-Britannique</li>
</orgName>
</list>
<tree>
<country name="Suède">
<noRegion>
<name sortKey="Bunder, Anne" sort="Bunder, Anne" uniqKey="Bunder A" first="Anne" last="Bünder">Anne Bünder</name>
</noRegion>
<name sortKey="Mahboubi, Amir" sort="Mahboubi, Amir" uniqKey="Mahboubi A" first="Amir" last="Mahboubi">Amir Mahboubi</name>
<name sortKey="Niittyl, Totte" sort="Niittyl, Totte" uniqKey="Niittyl T" first="Totte" last="Niittyl">Totte Niittyl</name>
<name sortKey="Sundman, Ola" sort="Sundman, Ola" uniqKey="Sundman O" first="Ola" last="Sundman">Ola Sundman</name>
</country>
<country name="Australie">
<region name="Victoria (État)">
<name sortKey="Persson, Staffan" sort="Persson, Staffan" uniqKey="Persson S" first="Staffan" last="Persson">Staffan Persson</name>
</region>
</country>
<country name="Canada">
<region name="Colombie-Britannique ">
<name sortKey="Mansfield, Shawn D" sort="Mansfield, Shawn D" uniqKey="Mansfield S" first="Shawn D" last="Mansfield">Shawn D. Mansfield</name>
</region>
</country>
<country name="Suisse">
<noRegion>
<name sortKey="Ruggeberg, Markus" sort="Ruggeberg, Markus" uniqKey="Ruggeberg M" first="Markus" last="Rüggeberg">Markus Rüggeberg</name>
</noRegion>
<name sortKey="Ruggeberg, Markus" sort="Ruggeberg, Markus" uniqKey="Ruggeberg M" first="Markus" last="Rüggeberg">Markus Rüggeberg</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000535 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000535 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32526794
   |texte=   CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32526794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020